Enhanced Detection of 3d Individual Trees in Forested Areas Using Airborne Full-waveform Lidar Data by Combining Normalized Cuts with Spatial Density Clustering

نویسندگان

  • W. Yao
  • P. Krzystek
  • M. Heurich
چکیده

A detailed understanding of the spatial distribution of forest understory is important but difficult. LiDAR remote sensing has been developing as a promising additional instrument to the conventional field work towards automated forest inventory. Unfortunately, understory (up to 50% of the top-tree height) in mixed and multilayered forests is often ignored due to a difficult observation scenario and limitation of the tree detection algorithm. Currently, the full-waveform (FWF) LiDAR with high penetration ability against overstory crowns can give us new hope to resolve the forest understory. Former approach based on 3D segmentation confirmed that the tree detection rates in both middle and lower forest layers are still low. Therefore, detecting sub-dominant and suppressed trees cannot be regarded as fully solved. In this work, we aim to improve the performance of the FWF laser scanner for the mapping of forest understory. The paper is to develop an enhanced methodology for detecting 3D individual trees by partitioning point clouds of airborne LiDAR. After extracting 3D coordinates of the laser beam echoes, the pulse intensity and width by waveform decomposition, the newly developed approach resolves 3D single trees are by an integrated approach, which delineates tree crowns by applying normalized cuts segmentation to the graph structure of local dense modes in point clouds constructed by mean shift clustering. In the context of our strategy, the mean shift clusters approximate primitives of (sub) single trees in LiDAR data and allow to define more significant features to reflect geometric and reflectional characteristics towards the single tree level. The developed methodology can be regarded as an object-based point cloud analysis approach for tree detection and is applied to datasets captured with the Riegl LMS-Q560 laser scanner at a point density of 25 points/m in the Bavarian Forest National Park, Germany, respectively under leaf-on and leaf-off conditions. The experiments lead to a detection rate of up to 67% for trees in the middle height layer and up to 53% for trees in the lower forest layer. It corresponds to an overall improvement in the detection rate of nearly 25% for forest understory compared to that obtained by the former method by extracting individual trees using normalized cuts segmentation solely. * Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards 3d Mapping of Forests: a Comparative Study with First/last Pulse and Full Waveform Lidar Data

This paper highlights several approaches to segment and reconstruct trees from LIDAR data and compares the results acquired both from first/last pulse and full waveform data. In a first step, we set up a conventional watershed based segmentation procedure, which robustly interpolates the CHM from the LIDAR data and finds possible stem positions of the tallest trees in the segments calculated fr...

متن کامل

A Sensitivity analysis for a novel individual tree segmentation algorithm using 3D lidar point cloud data

LiDAR sampling or full-area coverage is deemed as favorable means to achieve timely and robust characterizations of vertically distributed forest attributes. So far, two main strategies on the use of LiDAR data in forestry are reported: area-based method (ABA) and individual tree method (ITC). Recently, a novel 3D segmentation approach has been developed for extracting single trees from LIDAR d...

متن کامل

3D Modelling of Individual Trees Using Full-waveform Lidar

For the last few decades, analysis of forest area has been conducted using remote sensing techniques such as aerial photogrammetry, satellite imagery, synthetic aperture radar and lidar. Airborne laser scanning in particular offers a cost-effective, versatile, operationally flexible and robust sampling tool for forest management. There is a growing industry trend towards techniques of ‘precisio...

متن کامل

Single Tree Detection in Forest Areas with High-density Lidar Data

The study presents a novel method for delineation of tree crowns and detection of stem positions of single trees from dense airborne LIDAR data. The core module of the method is a surface reconstruction that robustly interpolates the canopy height model (CHM) from the LIDAR data. Tree segments are found by applying the watershed algorithm to the CHM. Possible stem positions of the tallest trees...

متن کامل

3d Segmentation of Full Waveform Lidar Data for Single Tree Detection Using Normalized Cut

The study highlights a novel method to segment single trees in 3D from dense airborne full waveform LIDAR data using the normalized cut segmentation. The key idea is to subdivide the tree area in a voxel space and to setup a bipartite graph which is formed by the voxels and similarity measures between the voxels. The normalized cut segmentation divides the graph hierarchically into segments whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013